Course description

Course abbreviation: Course name:	KME/DPP Mechanics of	Materials for De	esigners			Page:	1/3	
Academic Year:	2023/2024				Printed:	03.06.2024	09:37	
Department/Unit /		KME / DPP			Academic Year			
Title	Mechanics of Materials for Designers				Type of completion	Exam		
Accredited/Credits	Yes, 5 Cred.				Type of completion	Combined		
Number of hours	Lecture 3 [Hours/Week] Tutorial 2 [Hours/Week]							
Occ/max	Status A	Status B	Status C		Course credit prior to	YES		
Summer semester	0 / -	0 / -	0 / -		Counted into average	YES		
Winter semester	0 / -	0 / -	0 / -		Min. (B+C) students	10		
Timetable	Yes				Repeated registration	NO		
Language of instruction	Czech, Englis	h			Semester taught	Summer se	mester	
Optional course	Yes				Internship duration	0		
Evaluation scale	1 2 3 4	1 2 3 4			Ev. sc. – cred.	S N		
No. of hours of on-premise								
Auto acc. of credit	No							
Periodicity	K							
Substituted course	None							
Preclusive courses	N/A							
Prerequisite courses	N/A							
Informally recommended courses		KME/DZM						
Courses depending on this Course		N/A						

Course objectives:

The main aim of this subject is to introduce students into principles of the linear mechanics of materials. Students acquaint themselves with basic types of mechanical loading in one-dimensional and two-dimensional problems.

Requirements on student

Credit requirements: Elaboration of terminal paper. Credit obtained in previous years of study is not accepted.

Examination requirements: Active knowledge of theory and the ability to apply it to simple problems.

Content

1. Introduction into the subject. Summary of standard physical units. Initial assumptions of linear mechanics of materials. External forces and their consequences. Stress definition.

- 2. Simple tension and compression. Tensile test, stress-strain diagram. The principle of displacement or stresses superposition.
- 3. Strain definition. Hooke's law for uniaxial loading. Strain of straight bar, failure and stiffness criterion. Thermal strains.
- 4. Torsional loading of shafts. Definition of simple torsion. Stress and strain distribution. Failure and stiffness criterion.
- 5. Moments of simple and composite areas. Parallel-axis theorem for moments of inertia.

6. Bending of straight beams. Pure bending. Internal forces in beams. Relationships between loads, shear forces and bending moments.

- 7. 8. Solution of statically determinate and indeterminate beams.
- 9. Principles of triaxial stress. Generalized Hooke's law. Special cases of triaxial stress (uniaxial stress, plane stress).
- 10. Plane stress. Principal planes and stresses. Mohr's circle. Hooke's law for plane stress.
- 11. Ultimate states. Theories of elastic failure.
- 12. Modern computational methods for complex problems of mechanics of materials.
- 13. Experimental methods in mechanics of materials and their applications.

Guarantors and lecturers

• Guarantors: Ing. Vítězslav Adámek, Ph.D. (100%)

Literature

• Recommended:	Trebuňa, František; Jurica, Vladimír; Šimčák, František. Príklady a úlohy z pružnosti a pevnosti I.
	Vyd. 1. Košice : Vienala, 2000. ISBN 80-7099-593-9.
 Recommended: 	Hájek, Emanuel; Reif, Pavel; Valenta, František. Pružnost a pevnost I. Praha : SNTL, 1988.
• Recommended:	Trebuňa, František; Jurica, Vladimír; Šimčák, František. Pružnosť a pevnosť I. Vyd. 1. Košice :
	Vienala, 2000. ISBN 80-7099-477-0.
 Recommended: 	Zeman, Vladimír; Laš, Vladislav. Technická mechanika. 2. přeprac. vyd. Plzeň : Západočeská
	univerzita, 2001. ISBN 80-7082-789-0.
• Recommended:	Laš, Vladislav; Hlaváč, Zdeněk,; Vacek, Vlastimil. Technická mechanika v příkladech. 4. vyd. Plzeň :
	Západočeská univerzita, 2005. ISBN 80-7043-409-0.

Time requirements

All forms of study

Activities	Time requirements for activity [h]		
Contact hours	60		
Undergraduate study programme term essay (20-40)	25		
Preparation for an examination (30-60)	45		
Total:	130		

assessment methods

Knowledge - knowledge achieved by taking this course are verified by the following means:

Written exam

prerequisite

Knowledge - students are expected to possess the following knowledge before the course commences to finish it successfully:

The student knows and actively uses:

- principles of algebra
- principles of differential and integral calculus
- principles of physics

Recommended knowledge KME/DZM

teaching methods

Knowledge - the following training methods are used to achieve the required knowledge:

Practicum

Interactive lecture

learning outcomes

Knowledge - knowledge resulting from the course:

The student:

- acquires basic principles of linear mechanics of materials
- chooses and solves corresponding system of static equilibrium conditions
- defines quantities such as internal force, stress, strain
- determines internal forces in solids under simple type of loading
- analyses strain and stress states in solids under simple types of loading

- applies gained knowledge to component design
 acquires basic principles of experimental mechanics of materials

Course is included in study programmes	:
--	---

Study Programme	Type of	Form of	Branch	Stage St. plan v. Year	Block	Status R.year	R.
Design	Bachelor	Full-time	Design, specialization Industrial Design	1 4 2023	Povinné předměty	A 2	LS