Course description

Course abbreviation:	KME/TP		Page:	1 / 4
Course name: Academic Year:	Theory of Plasticity 2023/2024 Pri	nted:	03.06.2024	00.40
Academic Tear.	2023/2024	шюч.	03.00.2024	07.47

Department/Unit /	KME / TP	Academic Year	2023/2024
Title	Theory of Plasticity	Type of completion	Exam
Accredited/Credits	Yes, 5 Cred.	Type of completion	Written
Number of hours	Lecture 2 [Hours/Week] Tutorial 2 [Hours/Week]		
Occ/max	Status A Status B Status C	Course credit prior to	YES
Summer semester	0 / - 0 / -	Counted into average	YES
Winter semester	1/- 2/- 0/-	Min. (B+C) students	10
Timetable	Yes	Repeated registration	NO
Language of instruction	Czech, English	Semester taught	Winter semester
Optional course	Yes	Internship duration	0
Evaluation scale	1 2 3 4	Ev. sc. – cred.	S N
No. of hours of on-premise			
Auto acc. of credit	No		
Periodicity	K		
Substituted course	None		
Preclusive courses	N/A		
Prerequisite courses	N/A		
Informally recomm	ended courses N/A		
Courses depending	on this Course KME/PME		

Course objectives:

The main aim of this course is to introduce students into the basic principles of plasticity theory to be able to solve simple onedimensional and two-dimensional problems.

Requirements on student

Credit requirements:

Elaboration of terminal paper.

Credit obtained in previous years of study is not accepted.

Examination requirements:

Active knowledge of theory and the ability to apply it to particular problems.

Content

- 1. Deformation of bodies. Mathematical model of boundary value problem in plastic state. Stress analysis: stress tensor, stress deviator tensor and stress spherical tensor, principal stresses, invariants of stress tensor.
- 2. Invariants of stress deviator tensor, equivalent stress. Density of deformation energy. Strain analysis: relative displacement tensor, pure deformation tensor and rotation tensor, strain deviator tensor and strain spherical tensor, invariants of strain deviator tensor. Equivalent deformation in elastic and plastic state. Volumetric change.
- 3. Natural strain. Deformation rate. Approximations of stress-strain curves. Static isometric plastic deformation, Bauschinger effect.
- 4. 5. Initial yield criteria. Tresca and Mises yield criteria. Comparison of both criteria.
- 6. 7. Axisymmetric problems: Rotating discs and thick-walled vessels, elasto-plastic and plastic state.
- 8. Residual stresses. Drucker's rule of stability. Initial and sequential yield surfaces. Loading function and surface.
- 9. Loading criteria. Drucker's postulate of stability for triaxial state of stress. Associative law of plastic flow, compatibility condition. Initial yield surface.
- 10. Yield surface in deviatoric plane. Sequential yield surfaces. Theory of plasticity theory of small elasto-plastic strains.
- 11. Theory of plasticity theory of plastic flow. The comparison of plasticity theories.
- 12. Elasto-plastic and plastic potential. Elasto-plastic torsion of cylindrical bars.

Fields of study

Guarantors and lecturers

Guarantors: Ing. Vítězslav Adámek, Ph.D. (100%)
 Lecturer: Ing. Vítězslav Adámek, Ph.D. (100%)
 Tutorial lecturer: Ing. Vítězslav Adámek, Ph.D. (100%)

Literature

• Recommended: Hearn, E. J. Mechanics of Materials 2: The Mechanics of Elastic and Plastic Deformation of Solids

and Structural Materials. Third Edition. Oxford: Butterworth-Heinemann, 1997. ISBN 978-

0750632669.

• Recommended: Chen, Wai-Fah; Han, D. J. Plasticity for structural engineers. Ft. Lauderdale: J. Ross, 2007. ISBN

978-1-932159-75-2.

• **Recommended:** Servít, Radim. *Teorie pružnosti a plasticity II*. Vyd. 1. Praha: SNTL, 1984.

• **Recommended:** Chakrabarty, Jagabanduhu. *Theory of Plasticity. Third Edition.*.

• Recommended: Plánička, František; Kuliš, Zdeněk. Základy teorie plasticity. Praha: ČVUT, 2004. ISBN 80-01-

02876-3.

Time requirements

All forms of study

Activities	Time requirements for activity [h]				
Contact hours	52				
Preparation for an examination (30-60)	40				
Graduate study programme term essay (40-50)	50				
Total:	142				

assessment methods

Knowledge - knowledge achieved by taking this course are verified by the following means:

Seminar work

Oral exam

Skills - skills achieved by taking this course are verified by the following means:

Seminar work

Oral exam

Competences - competence achieved by taking this course are verified by the following means:

Seminar work

Oral exam

prerequisite

Knowledge - students are expected to possess the following knowledge before the course commences to finish it successfully:

definovat základní pojmy z oblasti lineární teorie pružnosti

disponovat základními znalostmi v oblasti integrálního a diferenciálního počtu

orientovat se v základních metodách řešení obyčejných diferenciálních rovnic

Page: 3 / 4

mít základní znalosti z teorie maticového a tenzorového počtu

Skills - students are expected to possess the following skills before the course commences to finish it successfully:

derivovat a integrovat základní matematické funkce

provádět základní operace s maticemi a vektory (sčítání, násobení, inverze, apod.)

sestavit model lineární úlohy pružnosti

řešit obyčejné lineární diferenciální rovnice metodou separací proměnných

Competences - students are expected to possess the following competences before the course commences to finish it successfully:

N/A

teaching methods

Knowledge - the following training methods are used to achieve the required knowledge:

Practicum

Self-study of literature

Lecture supplemented with a discussion

One-to-One tutorial

Skills - the following training methods are used to achieve the required skills:

Lecture supplemented with a discussion

Practicum

One-to-One tutorial

Competences - the following training methods are used to achieve the required competences:

Lecture with visual aids

Practicum

Task-based study method

learning outcomes

Knowledge - knowledge resulting from the course:

definovat zobecněné napětí a deformaci

popsat matematický model okrajové úlohy v plastickém stavu

vysvětlit význam jednotlivých invariantů tenzoru napětí a deformace a jejich deviátorů

vysvětlit pojmy počáteční a následná podmínka plasticity a popsat základní modely zpevnění

popsat základní typy aproximací pracovního diagramu

Skills - skills resulting from the course:

formulovat Trescovu či Misesovu podmínku plasticity pro zadanou 1D a 2D úlohu

provést analýzu napjatosti v elasto-plastickém stavu u vybraných rotačně symetrických úloh

sestavit rovnice popisující jednoduché úlohy tváření

řešit základní typy namáhání těles (tah, krut, ohyb) při uvažování plastických deformací

stanovit zbytková napětí při odlehčení z plně plastického a elasto-plastického stavu pro základní typy namáhání (tah, krut, ohyb)

Competences - competences resulting from the course:

N/A

Course is included in study programmes:

Study Programme	Type of	Form of	Branch	Stage S	t. plan v.	Year	Block	Status	R.year	R.
Applied Mechanics	Postgraduat e Master	Full-time	Výpočty a design konstru	ıkci 1	2018 akr	2023	Povinné předměty - specializace	A	2	ZS

							Pa	age:	4 / 4
Study Programme	Type of	Form of	Branch	Stage St. plan v.	Year	Block	Status	R.year	R.
Applied Mechanics	Postgraduat e Master	Full-time	Dynamika konstrukcí a mechatronika	1 2018 akr	2023	Povinně volitelné předměty - specializace (typ B)	В	2	ZS