Course description

Course abbreviation:	KMM/MMEA		_			Page:	1 / 3	
Course name:	Modern Materi	als in Engineer	ing			02.06.2024	00.40	
Academic Year:	2023/2024				Printed:	03.06.2024	08:42	
Department/Linit /	KMM / MME	N			A andomia Vaar	2022/2024	i	
		A iala in Ensinean	T	Academic Teal	Dra Evom Cradit			
The	Modern Mater	lais in Engineer	Ty	pe of completion	Pre-Exam Credit			
Accredited/Credits	Yes, 3 Cred.			Ty	pe of completion	Combined		
Number of hours	Lecture 2 [Hours/Week] Tutorial 1 [Hours/Week]							
Occ/max	Status A	Status B	Status C	Cou	rse credit prior to	NO		
Summer semester	0 / -	0 / -	0 / -	Cou	nted into average	YES		
Winter semester	0 / -	0 / -	0 / -	Mir	n. (B+C) students	10		
Timetable	Yes			Repo	eated registration	NO		
Language of instruction	English				Semester taught	Summer se	emester	
Optional course	Yes			In	ternship duration	0		
Evaluation scale	1 2 3 4							
No. of hours of on-premise								
Auto acc. of credit	Yes in the case of a previous evaluation 4 nebo nic.							
Periodicity	K							
Substituted course	KMM/MPE							
Preclusive courses	N/A							
Prerequisite courses	N/A							
Informally recommended courses N/A								
Courses depending	on this Course	N/A						

Course objectives:

Provide to the students a theoretical background of solid-state physic and material structure, explain how does this structure relate to the response of the material to mechanical, thermal, chemical, and radiation effects of its environment; and how can be the structure of the material and subsequently its properties improved.

To present an overview and characterization of modern engineering materials.

Requirements on student

Compulsory attendance at seminars; Successful passing the check tests, seminary work and presentation. Final grade is calculated as a weighted average Test: 60% Seminar work: 40%

Content

Lectures:

Crystallography, ideal and real crystal structures

Diffusion in solids, mechanisms, Fick laws, diffusion coefficients

Phase transformations, decomposition of solid solutions, the coherency of a precipitate, precipitation hardening;

Dislocations, plastic, and elastic deformation, slip systems, dislocation reactions with lattice defects; dislocation mobility, and plastic deformation;

Recovery, primary recrystallization and secondary recrystallization

Metallic corrosion - types, principles, protections

Mechanical testing - basics tests overview, evaluated values, interpretation of results, special test (small punch, sub-sized samples) and their use for life prediction

Modern materials - types, processing, microstructure, properties. Steels and non-ferrous metals, composites, surface layers, and coatings

Materials for extreme temperatures and environments Additively manufactured materials, methods, applications

Seminars:

Crystallography basic: lattice characterization, directions, and planes in a cubic lattice, density calculations Diffusion: First and second Fick laws - practical applications, calculations Creep and fatigue Defectoscopy - methods and applications Binary diagrams interpretation, phase transformations in steels Projects presentations and discussions, assessments

Fields of study

COURSEWARE

Guarantors and lecturers

- Guarantors: Prof. Ing. Ludmila Kučerová, Ph.D. (100%)
- Tutorial lecturer: Prof. Ing. Ludmila Kučerová, Ph.D. (100%)

Literature

 Extending: 	Humphreys F. J.; Hatherly, M. Recrystallization and related annealing phenomena. 2nd ed. Oxford :
	Elsevier, 2004. ISBN 0-08-044164-5.
• Recommended:	Ashby, M. F.; Johnson, Kara. Materials and design : the art and science of material selection in
	product design. 3rd ed. Amsterdam : Butterworth-Heinemann, 2014. ISBN 978-0-08-098205-2.
• Recommended:	Smallman, R. E.; Bishop, R. J. Modern physical metallurgy and materials engineering science,
	process, applications. 6th ed. Oxford : Elsevier Butterworth-Heinemann, 1999. ISBN 0-7506-4564-4.
• Recommended:	Haasen, Peter. Physical metallurgy. 3rd enl. and rev. ed. Cambridge : Cambridge University Press,
	1996. ISBN 0-521-55092-0.

Time requirements

Full-time form of study

Activities		Time requirements for activity [h]		
Preparation for comprehensive test	t (10-40)	18		
Presentation preparation (report in language) (10-15)	a foreign	15		
Contact hours		45		
	Total:	78		

assessment methods

Knowledge - knowledge achieved by taking this course are verified by the following means:

Seminar work

Individual presentation at a seminar

Test

Skills - skills achieved by taking this course are verified by the following means:

Seminar work

Individual presentation at a seminar

Competences - competence achieved by taking this course are verified by the following means:

Individual presentation at a seminar

Seminar work

prerequisite

Knowledge - students are expected to possess the following knowledge before the course commences to finish it successfully:

Fundamentals of physic and chemistry.

Fundamentals of material science

Skills - students are expected to possess the following skills before the course commences to finish it successfully:

The ability of individual work with scientific texts

Competences - students are expected to possess the following competences before the course commences to finish it successfully:

N/A

teaching methods

Knowledge - the following training methods are used to achieve the required knowledge:

Lecture

Practicum

Individual study

Multimedia supported teaching

Skills - the following training methods are used to achieve the required skills:

Practicum

Seminar

Individual study

Multimedia supported teaching

Competences - the following training methods are used to achieve the required competences:

Students' portfolio

Individual study

Multimedia supported teaching

learning outcomes

Knowledge - knowledge resulting from the course:

Knowledge of modern engineering materials

Knowledge of materials response to various types of loadings and environments

Knowledge of the basics of solid-state physics and material structure

Skills - skills resulting from the course:

Ability to explain the relationship between material processing, structure, and resulting properties

Competences - competences resulting from the course:

N/A

Course is included in study programmes: