Course description

Course abbreviation: KTO/ANC1 Page: 1 / 3
Course name: Automation of NC Programming 1

Academic Year: 2023/2024 Printed: 08.07.2025 17:58

Department/Unit /	KTO / ANC1			Academic Year	2023/2024			
Title	Automation of	f NC Programm	ing 1	Type of completion	Exam			
Accredited/Credits	Yes, 4 Cred.			Type of completion	Combined			
Number of hours	Lecture 2 [Hours/Week] Tutorial 2 [Hours/Week]							
Occ/max	Status A	Status B	Status C	Course credit prior to	Yes			
Summer semester	6 / -	2 / -	2 / -	Counted into average	YES			
Winter semester	0 / -	0 / -	0 / -	Min. (B+C) students	5			
Timetable	Yes			Repeated registration	NO			
Language of instruction	Czech			Semester taught	Summer semester			
Optional course	Yes			Internship duration	0			
Evaluation scale	1 2 3 4			Ev. sc. – cred.	SN			
No. of hours of on-premise								
Auto acc. of credit	Yes in the case of a previous evaluation 4 nebo nic.							
Periodicity	every year							
Specification periodicity								
Substituted course	None							
Preclusive courses	KTO/PNCS							
Prerequisite courses	N/A							
Informally recomm	ended courses	KTO/ZNC						
Courses depending on this Course		N/A						

Course objectives:

To teach students how to set up and create NC technology and NC data for machining parts using selected CAM systems

Requirements on student

Class credit:

Processing and defence of a semester work

Exam range and content:

1. Written part

NC program processing (in taught NC program language)

2. Oral part

Make out two examinational questions

Content

- 1. New trends in CNC control systems
- 2. Parametric programming meaning and framework of parametric program
- 3. Programming systems partition, characteristic, programming systems advantage and disadvantage
- 4. Dialog programming symbolic programming languages DIALOG, SinuTrain
- 5. Dialog programming lathe turning
- 6. Dialog programming milling module
- 7.CAM system characteristic, interfaces between other CAD/CAM systems
- 8. CAM programming of rotating parts lathe turning
- 9. CAM programming of non-rotating parts milling
- 10. CAM multi axes machining, scribing and user modules of system design
- 11. CAM macro framework

- 12. Data transfer DNC network, their characteristic and partition
- 13. Technical economic aspects of NC machines use and manually or dialog programming

Fields of study

Guarantors and lecturers

Guarantors: Ing. Luboš Kroft, Ph.D. (100%)
 Lecturer: Ing. Luboš Kroft, Ph.D. (100%)

• Tutorial lecturer: Ing. Jan Hnátík, Ph.D. (30%), Ing. Luboš Kroft, Ph.D. (70%)

Literature

• Basic: Štulpa, Miloslav. CNC: programování obráběcích strojů. První vydání. 2015. ISBN 978-80-247-

5269-3.

• Extending: Žára, Jiří; Beneš, Bedřich; Sochor, Jiří; Felkel, Petr. *Moderní počítačová grafika*. 2., přeprac. a rozš.

vyd. Brno: Computer Press, 2004. ISBN 80-251-0454-0.

• Recommended: Jandečka, Karel; Kožmín, Pavel; Česánek, Jiří. Programování NC strojů. V Plzni : Západočeská

univerzita, 2000. ISBN 80-7082-692-4.

Time requirements

All forms of study

Activities	Time requirements for activity			
Practical training (number of hours)	52			
Undergraduate study programme term essay (20-40)	20			
Preparation for an examination (30-60)	40			
Total:	112			

assessment methods

Knowledge - knowledge achieved by taking this course are verified by the following means:

Combined exam

Seminar work

Skills - skills achieved by taking this course are verified by the following means:

Seminar work

Combined exam

Competences - competence achieved by taking this course are verified by the following means:

Seminar work

prerequisite

Knowledge - students are expected to possess the following knowledge before the course commences to finish it successfully:

to explain the meaning of individual function NC code

to describe cutting tool geometry

to explain the relevance of individual machining technological operations

Skills - students are expected to possess the following skills before the course commences to finish it successfully:

Page: 3 / 3

to create the NC program in ISO code

to propose the cutting tools for individual machining operations

to assemble a manufacturing process for a NC machine tool

Competences - students are expected to possess the following competences before the course commences to finish it successfully:

N/A

N/A

teaching methods

Knowledge - the following training methods are used to achieve the required knowledge:

Lecture with visual aids

Practicum

Task-based study method

Skills - the following training methods are used to achieve the required skills:

Lecture with visual aids

Practicum

Individual study

Competences - the following training methods are used to achieve the required competences:

Practicum

Students' portfolio

learning outcomes

Knowledge - knowledge resulting from the course:

to characterize individual programming systems machining strategies used in workshop

to describe the possibilities of individual workshop programming systems

Skills - skills resulting from the course:

to create NC technology using workshop programming

to create NC technology using simple CAM systems for complex shaped components in two axes

Competences - competences resulting from the course:

N/A

N/A

N/A

Course is included in study programmes:

Study Programme	Type of	Form of	Branch	Stage	e St. j	plan v.	Year	Block	Status	R.year	R.
Engineering	Bachelor	Full-time	Programming of NC Machines		1 2	020	2023	Compulsory courses	A	2	LS
Mechanical Engineering	Bachelor	Combined	Engineering Materials and Manufacturing Technolog		1 2	020	2023	Povinně volitelné před. 3.roč blok "B"	В	3	LS
Mechanical Engineering	Bachelor	Full-time	Technology of Metal Cutting		1 2	020	2023	Povinně volitelné předměty 3. roč LS (odborné zaměření)	В	3	LS