Course description

Course abbreviation: Course name:	KTO/PNCSA NC-Machine 7	Cool Programmi	ng		Page: 1	/ 4	
Academic Year:	2023/2024	C	C	Printed:	03.06.2024 0	07:10	
Department/Unit /	KTO / PNCSA	Δ		Academic Year	2023/2024		
Title	NC-Machine	Fool Programmi	ing	Type of completion	Exam		
Accredited/Credits	Yes, 6 Cred.			Type of completion	Combined		
Number of hours	Lecture 3 [Ho	Lecture 3 [Hours/Week] Tutorial 3 [Hours/Week]					
Occ/max	Status A	Status B	Status C	Course credit prior to	YES		
Summer semester	0 / -	0 / -	0 / -	Counted into average	YES		
Winter semester	0 / -	0 / -	4 / -	Min. (B+C) students	10		
Timetable	Yes			Repeated registration	NO		
Language of instruction	English			Semester taught	Winter semes	ster	
Optional course	Yes			Internship duration	0		
Evaluation scale	1 2 3 4			Ev. sc. $-$ cred.	S N		
No. of hours of on-premise							
Auto acc. of credit	Yes in the case	e of a previous e	evaluation 4 nebo ni	ic.			
Periodicity	K						
Substituted course	None						
Preclusive courses	KTO/PNCS						
Prerequisite courses	N/A						
Informally recomm	ended courses	KTO/AVP					
Courses depending on this Course		N/A					

Course objectives:

To understand the systems for programming NC machine tools, know how to use CAM systems to create NC programs, to become acquainted with the possibilities of using cycles, subroutines and parametric programming.

Requirements on student

Class credit: Processing and defence of a semester work Time limit for submission: before 15.1. of actual academic year

Examination: Practical part - processing of a NC program of a given part Oral part - 2 questions

Content

1. Control system SINUMERIK 810T/M description. NC programming. Demonstration of NC program use at education lathe EMCO PC TURN 120

- 2. Description and demonstration of NC program use at education milling machine EMCO PC MILL 100
- 3. KOVOPROG, partprogram framework, geometry semestral task engage
- 4. demonstration of partprogram design language Kovoprog, basic regime operations

5. SolidCAM, modeling, import of graphics data from another system, NC technology design, postprocessors

6.CAD/CAM system SolidCAM -basic information, operations, demonstration of modeling, NC, simulation and NC technology design.

7. Separate work by semestral task solving

Fields of study

viz PORTÁL ZČU - Courseware

Guarantors and lecturers

 Guarantors: 	Ing. Jan Hnátík, Ph.D. (100%)
• Lecturer:	Ing. Jan Hnátík, Ph.D. (100%)

• Tutorial lecturer: Ing. Jan Hnátík, Ph.D. (100%)

Literature

• Basic:	Lynch, M. Computer Numerical Control, Advanced Techniques. McGraw-Hill, Inc.New York St. Luis, 1992. ISBN 0-07-039224-2.
• Recommended:	AlphaCAM ? Reference Manual.
• Recommended:	ASM Handbook, Vol. 16: Machining. Ohio, 1999. ISBN 0871700077.
• Recommended:	CATIA ? Reference Manual.
• Recommended:	JANDEČKA, K. Error Size of the Helix (screw) Groove by Grinding. Springdale Lane, Millersville, U.S.A., 2012. ISBN 978-3-03785-297-2.
• Recommended:	Náprstková, Nataša; Jandečka, Karel. <i>Programování výrobních strojů</i> . 1. vyd. Ústí nad Labem : Univerzita J.E. Purkyně v Ústí nad Labem, 2010. ISBN 978-80-7414-216-1.

Time requirements

All forms of study

Activities		Time requirements for activity [h]				
Contact hours		26				
Graduate study programme term essay (40-50)		40				
Preparation for an examination (30-60)		40				
Practical training (number of hours)		39				
	Total:	145				

assessment methods

Knowledge - knowledge achieved by taking this course are verified by the following means:

Seminar work

Practical exam

create a machining strategy explain the selected machining strategy

Skills - skills achieved by taking this course are verified by the following means:

Seminar work

Practical exam

program the proposed strategy in the CAM system generate NC programs and setup sheet

Competences - competence achieved by taking this course are verified by the following means:

Seminar work

Practical exam

to suggest machining technology in general for complex parts

prerequisite

Knowledge - students are expected to possess the following knowledge before the course commences to finish it successfully:

to explain the concepts of engineering technology, especially machining technology

to explain terms from analytical geometry

to explain the basic principles of manual NC programming

To understand the systems for programming NC machine tools, know how to use CAM systems to create NC programs, to become acquainted with the possibilities of using cycles, subroutines and parametric programming.

Skills - students are expected to possess the following skills before the course commences to finish it successfully:

to apply the knowledge of mathematics, especially in the field of analytical geometry

to compile a simple NC program in ISO code

to set up the manufacturing process

Competences - students are expected to possess the following competences before the course commences to finish it successfully:

N/A

to use practically knowledge from the field of analytical geometry

to create NC programs for simple parts

teaching methods

Knowledge - the following training methods are used to achieve the required knowledge:

Lecture

Practicum

Multimedia supported teaching

Task-based study method

Project-based instruction

General description of technology creation for NC machines

Skills - the following training methods are used to achieve the required skills:

Individual study

One-to-One tutorial

Task-based study method

Multimedia supported teaching

Project-based instruction

Practicing the creation of NC programs on specified components

Competences - the following training methods are used to achieve the required competences:

Practicum

Lecture

Project-based instruction

Task-based study method

Multimedia supported teaching

Elaboration of individual projects - technology design

learning outcomes

Knowledge - knowledge resulting from the course:

to clarify the possibilities of building the NC program manually, with the help of workshop programming systems and / or automatically

to explain basic machining strategies of NC machining

to explain the meaning of cycles and parametric programming

Skills - skills resulting from the course:

to compile the NC program manually, with the help of workshop programming or automatically with PC support

to compile a NC program using cycles and parameterization

to use NC machining strategies in CAM systems

N/A

N/A

use modern CAD / CAM systems create NC programs for complex parts

Course is included in study programmes:

Study Programme	Type of	Form of	Branch	Stage	St. plan v.	Year	Block	Status	R.year	R.
Design of Power Machines and Equipment	Postgraduat e Master	Full-time	Digital Manufacturing	1	2021	2023	Povinně volitelné předměty 1. roč. ZS	В	1	ZS
Design of Power Machines and Equipment	Postgraduat e Master	Full-time	Manufacturing Machines and Technologies	1	2021	2023	Povinně volitelné předměty 1. roč. ZS	В	1	ZS
Design Engineering of Machines and Technical Devices	Postgraduat e Master	Combined	Design Engineering of Manufacturing Machines and Equipment	1	2020	2023	Doporučené výběrové předměty v AJ	С	2	ZS
Design Engineering of Machines and Technical Devices	Postgraduat e Master	Full-time	Design Engineering of Manufacturing Machines and Equipment	1	2020	2023	Doporučené výběrové předměty v AJ	С	2	ZS
Design Engineering of Machines and Technical Devices	Postgraduat e Master	Full-time	Design Engineering of Vehicles and Handling Machinery	1	2020	2023	Doporučené výběrové předměty v AJ	С	2	ZS
Design Engineering of Machines and Technical Devices	Postgraduat e Master	Combined	Design Engineering of Vehicles and Handling Machinery	1	2020	2023	Doporučené výběrové předměty v AJ	С	2	ZS
Design of Power Machines and Equipment	Postgraduat e Master	Full-time	Design of Power Machine and Equipment	s 1	2020	2023	Doporučené výběrové předměty v AJ	С	2	ZS
Industrial Engineering and Management	Postgraduat e Master	Full-time	Industrial Engineering and Management	1	2020	2023	Doporučené výběrové předměty v AJ	С	2	ZS
Industrial Engineering and Management	Postgraduat e Master	Combined	Industrial Engineering and Management	1	2020	2023	Doporučené výběrové předměty v AJ	С	2	ZS
Machining, Additive Technology and Quality Assurance	Postgraduat e Master	Full-time	Machining, Additive Technology and Quality Assurance	1	2020	2023	Doporučené výběrové předměty v AJ	С	2	ZS
Materials Science and Manufacturing Technology	dPostgraduat e Master	Combined	Materials Science and Manufacturing Technolog		2020	2023	Doporučené výběrové předměty v AJ	С	2	ZS
Materials Science and Manufacturing Technology	dPostgraduat e Master	Full-time	Materials Science and Manufacturing Technolog		2020	2023	Doporučené výběrové předměty v AJ	С	2	ZS